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Abstract

In this paper we illustrate the theory and applications of the technique
of �ltering by reducing the variation norm or variation seminorm of a
signal, adding many improvements and new results.

1 Introduction

We initiate with a brief overview of the topic for selfcontainedness but also to
introduce some improvements, and then move on to present some new results.
The terms "smoothing" and "smoother" are extensively used in the litera-

ture on stochastic processes. Our use of the term smoothing here is arguably
appropriate in view of the approach that we propose, but there are profound dif-
ferences with stochastic �ltering. In probabilistic terms smoothing is the e¤ect
of projections on an increasing family of closed subspace of a Hilbert space.
Here �rst of all smoothing starts as a deterministic concept. It arises as well

from a projection but on a compact convex body, and hence we pass from a
linear to a nonlinear projection. In addition, while in the stochastic context the
projection is uniquely de�ned, in our case we have an in�nity of possible projec-
tions that correspond to the degree of the smoothing e¤ect. In the application
of noise �ltering, for example, we propose to optimize such a degree maximizing
a suitable statistic. In general, some rule of optimization of the strength of the
smoothing e¤ect is required in any other application.
Filtering by variation is achieved projecting, with respect to the Hilbert

space jj:jj2 norm, a signal s 2 RN with a variation v(s) (where v is a norm to
be de�ned momentarily) on a closed sphere around the origin of v with radius
r < v(s).
Of course, the celebrated Projection Theorem for Hilbert spaces is in force

for studying this problem.
A �rst crucial point is that the closed spheres of the variation norm are

polytopes.
There are in the literature speci�c methods for projecting a point on a poly-

tope, such as the Wolfe algorithm (see [9]).
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But our analysis of the structure of the polytopic spheres of v uncover the
possibility of using a more e¢ cient technique of projection valid for polytopic
spheres belonging to both classes M and P (to be de�ned momentarily, and
the spheres of v will be proved to be in such family). We call this method fast
projection. In practice it will be clear such method provides the projection in-
stantaneously, and this makes feasible to e¢ ciently implement many interesting
numerical applications.
This line of research started in 1981 with [3], subsequently published in

a Operation Research Conference in 1982 (see [4]). These papers illustrate a
smoothing technique based on the variation norm.
The mathematical theory ofM norms and the de�nition ofM norms for RN

and then of the subclass P were given in [2]. In the present paper we de�ne the
class P more in general and then apply our analysis to the intersection of these
two classes.
Moreover, in [2] a main result was established, which shows that, for the

(polytopic) spheres of norms in class M \ P, a fast projection technique is
applicable. The results of these papers were later on published in a O.R. Journal
(see [5]), where, in addition, a proof that v is in the above category was given
based on the present author implementation (in Modula-2) of the fast projection
method for v, which was developed in 1980.
A couple numerical applications had been published in a research report only

[6] (�ltering and seasonal adjustment). We present here an overview of these
applications, and add a third one (related to portfolio management).
Here are the original contributions of the present paper.
First we give a new and improved proof of the fact that v is a M norm of

class P. The new proof is mathematical in nature, rather then based on the
code developed for implementing the fast projection. Moreover, it also directly
translates into a new algorithm to implement the fast projection, which looks
simpler and more e¢ cient that the original one.
The second original contribution is that, thanks to some new preliminary

results, we will develop a further mathematical technique of projection on the
spheres of the norm v, which is even simpler and faster than the fast projection,
and which we call the superfast projection.
Finally, the third original contribution consists in showing that the math-

ematical techniques developed to project a signal on a sphere de�ned by the
variation norm v, can be used to obtain the projection of a signal on the spheres
de�ned by the pure variation seminorm w. This hugely simplify projections on
the w spheres and, in addition, opens the way to an easy comparison between
the two approaches.
Ultimately, while the projections on spheres of the variation norm v is sim-

pler than the projection on w spheres, it is a good approximation for this latter,
especially for low values of the ratio js(1)j=s(w). This will give some motiva-
tion for the use of v, in view of its greater simplicity and e¢ ciency. However,
whenever the use of the pure variation w is advisable, our results show that the
fast techniques we have developed for v also apply, by means of an algorithm
we introduce, to the pure variation seminorm w.
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In the �nal two sections �rst we illustrate some practical applications like
�ltering, seasonal adjusting and portfolio management, which can all be for-
mulated in terms of either v or w, and then we conclude looking at research
perspectives.

2 The Variation Norm and Its Polytopic Spheres

In the rest of the paper we will use without detailed recalls many concepts and
results of convex analysis, including elementary computations, extreme points
and faces (in particular exposed faces) the Krein Milman Theorem and its spe-
cialization for polytopes (which are always compact) and so on, as well as basic
concepts and result of vector topology, like the fundamental theorem for vector
topology bases the collapse of all vector topologies to a unique one in RN , the
fact that RN is locally compact and so on.
The present section and the next two we review and improve the basic theory

as given in [2].
Consider a time series or signal ts(:) : N!R, where N denotes the natural

numbers (representing instant of times from 1 to 1) and R the real �eld. We
are interested to its restriction to the interval [1; N ] (where N > 1 is an integer)
and denote it with s. Of course, s 2 RN .
In this space RN we work with many norms and seminorms, in the �rst place

the (pure) variation seminorm w and the variation norm v norm de�ned by:

w(s) =
N�1X
i=1

js(i+ 1)� s(i)j

v(s) = js(1)j+
N�1X
i=1

js(i+ 1)� s(i)j = js(1)j+ w(s)

We do not explicitly indicate the dependence of these seminorms and norms on
N , unless needed for clarity. We leave as an exercise to verify that w(:) is a
bona�de seminorm on RN and v(:) a bona �de norm for RN .
If we consider the N �N matrix:

T =

0BBBB@
1 0 :: :: 0 0
�1 1 :: :: 0 0
:: :: :: :: :: ::
0 0 :: �1 1 0
0 0 :: :: �1 1

1CCCCA
then the following fundamental relation holds (composition of functions is de-
noted by juxtaposition):

v = p1T

where p1 denotes for simplicity the jj:jj1 norm.

3



We will exploit later on the following well known result where we use the
notations ei for the ith versor on RN and C(:) for the convex extension of a
set. Moreover, given a set C, ex(C) will denote the set of extreme points of C.
Finally given two vectors x and y, [x : y] denotes the segment joining x and y.

Lemma 1 The following formula holds:

S1p1 = C(fe1; ::; eN ;�e1; ::;�eNg)

Moreover ex(S1p1) = fe1; ::; eN ;�e1; ::;�eNg.

Proof. From fe1; ::; eN ;�e1; ::;�eNg � S1p1 and the fact that S
1
p1 is convex it

follows
C(fe1; ::; eN ;�e1; ::;�eNg) � S1p1

Denote the simplex by Sm = C(fe1; ::; eNg). Then, by elementary computations
for convex sets

C(fe1; ::; eN ;�e1; ::;�eNg) = C(fe1; ::; eNg [ f�e1; ::;�eNg) =

[f[x : y] : x 2 Sm and y 2 �Smg

Now z 2 S1p1 ,
P
jzij � 1. Denote by k the indexes of the positive components

of z and by j the indexes of the negative ones. Then

z =
X

zkek +
X

zj(�ej) =

= (
X

zk)
X zkP

zk
ek + (

X
jzj j)

X jzj jP
jzj j

(�ej) 2

[f[x : y] : x 2 Sm and y 2 �Smg

and therefore
S1p1 � C(fe1; ::; eN ;�e1; ::;�eNg)

The variant of this argument if there are only positive or only negative compo-
nents is obvious and so the �rst statement is established. Next notice that each
singleton feig and f�eig is, by an immediate computation an exposed face of
S1p1 and hence all ei and all �ei are extreme points of S

1
p1 . Since, by the �rst

statement any point of S1p1 is a convex combination of these vectors, it follows
that there cannot be other extreme points. This completes the proof.
If we denote by S1v the closed unit sphere around the origin of norm v, from

v = p1T , we have:

S1v = v
�1([�1; 1]) = T�1p�11 ([�1; 1]) = T�1S1p1 =

= T�1C(fe1; ::; eN ;�e1; ::;�eNg) = C(fT�1e1; ::; T�1eN ;�T�1e1; ::;�T�1eNg)

where we have used an elementary computation in the last passage.
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Consequently S1v is a polytope, that is, the convex extension of a �nite set.
Next:

T�1 =

0BBBB@
1 0 :: :: 0 0
1 1 0 :: 0 0
:: :: :: :: :: ::
1 1 1 1 1 0
1 1 1 1 1 1

1CCCCA (1)

that is, the lower triangular matrix. Hence the polytope S1v is explicitly:

S1v = C(f

0BBBB@
1
1
::
1
1

1CCCCA ;
0BBBB@
0
1
::
1
1

1CCCCA ; ::;
0BBBB@
0
0
::
0
1

1CCCCA ;�
0BBBB@
1
1
::
1
1

1CCCCA ;�
0BBBB@
0
1
::
1
1

1CCCCA ; ::;�
0BBBB@
0
0
::
0
1

1CCCCA g) (2)

We denote by J the generating set, argument of convex extension in this
formula, so that S1v = C(J). We stress that each element of J represents a jump
in the signal, positive or negative according to its sign, so that a signal s 2 S1v is
decomposed in the sequence of its jumps. Indeed the signal s can be represented
in the form:

s = s(1)T�11 +

NX
i=2

(s(i)� s(i� 1))T�1i =

= js(1)jsign(s(1))T�11 +
NX
i=2

js(i)� s(i� 1)jsign(s(i)� s(i� 1))T�1i (3)

where T�1i is the ith columns of T�1. In a more compact form, if we de�ne I�
to be the matrix obtained from the identity matrix attributing to the sequence
of 1 the signs of the sequence of signs of jumps sign(s(1)), sign(s(2) � s(1)),
::, and setting to zero the the components corresponding to a null jump we can
write:

s = T�1I�

0BBBBBB@
js(1)j

js(2)� s(1)j
::
::

js(N)� s(N � 1)j

1CCCCCCA = T�1

0BBBBBB@
s(1)

s(2)� s(1)
::
::

s(N)� s(N � 1)

1CCCCCCA
This formula expresses the signal in terms of its jumps in value and hence
connects its expression to the variation norm.

3 Properties of Polytopic and M norm Spheres

When we consider a closed sphere Srp around the origin of a norm in RN , many
of its properties are shared by S1p since S

r
p is obtained by in�ating S

1
p according
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to the relation Srp = rS
1
p . Thus in the sequel we will mostly refer to closed unit

spheres. In particular, all the properties that we will introduce for the variation
closed unit sphere S1v around the origin hold good for any close sphere S

r
v of

radius r > 0.
From vector topology we know that the closed variation sphere S1v is a closed

convex body, it is circled and hence symmetric and is radial at the origin. From
convex analysis we know a number of further interesting properties. As a �rst
example, any polytope is compact and hence S1v is compact (this con�rms the
well know result that the unique vector topology of RN is locally compact).
Another result of convex analysis that we can invoke states that, if C is a

closed convex body, then the boundary of C is the union of the proper closed
exposed faces of C. Thus the boundary of S1v is the union of its proper (exposed)
closed faces. And since the extreme point of a closed exposed face are also
extreme for S1v (by another well known result of Convex Analysis), all closed
exposed faces are polytopes generated by a subset of the generating set of ex(S1v)
(we will soon characterize such subsets), that is, all closed exposed faces are
subpolytopes of S1v .
But who is ex(S1v)?
The following result, which exploits the linear isomorphism connecting any

two bases and Lemma 1, tells us, in particular, that ex(S1v) = J . A direct proof
is also possible and is given in the cited reference.

Theorem 2 Suppose that a set of 
 � RN is given by 
 = C(B [ �B), where
B = fbig is a linear basis. Then 
 is the closed unit sphere around the origin
of a norm and ex(
) = B [ �B.

Proof. Consider the linear isomorphism de�ned by the bases feig and fbig
represented by the matrix 	 whose columns are given by the vectors bi. Then,
by Lemma 1,

C(B [ �B) = C(f	eig [ f	(�ei)g) = 	C(feig [ f(�ei)g) = 	S1p1
The linear isomorphism preserves all the properties for C(B [ �B) to qualify
as the unit closed sphere of a norm and the extreme points of C(B [ �B) are
readily seen to be the images under 	 of the extreme points of S1p1 . The theorem
is thereby established.
Moving on, we need to introduce the notation L(C) for the linear extension

of the set C.

Theorem 3 Let 
 � RN be a polytope so that 
 = C(�) for some �nite set �.
By the Krein Milman (brie�y KM) Theorem for polytopes � � ex(
). Then 

is the closed unit sphere around the origin of a norm i¤ ex(
) contains a basis
B for RN and is symmetric (and hence i¤ it contains B [�B). Consequently,
it is impossible to specify a polytopic sphere of a norm with less that 2N extreme
points.

Proof. Necessity. Because a polytope is always compact the Krein Milman
Theorem holds, and since the convex extension of a �nite set is compact 
 =
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C(�) = C(ex(
)). If ex(
) does not contain a base, then C(ex(
)) � L(ex(
))
which would be a proper subspace of RN , so that 
 would have no interior,
which is a contradiction. The symmetry condition is also necessary in view of
the fundamental Theorem on bases for vector topologies (see [1]). In fact, as it
is easily veri�ed, C(ex(
)) is symmetric i¤ ex(
) is symmetric. Su¢ ciency. By
the hypotheses


 � C(B [ �B)

Thus 
 is convex symmetric (and hence convex and circled) and radial at zero,
so that its Minkowski functional de�ne a norm and 
 is its closed unit sphere.
This completes the proof, since the �nal statement is by now obvious.

Remark 4 Note that under the hypotheses of this theorem B [ �B is not in
general the whole set of extreme points of 
, as in the case of the preceding
theorem. This justi�es singling out the case where the sphere of a polytopic
norm has the minimum number 2N of extreme points because ex(
) = B [�B
according to the de�nition that follows.

De�nition 5 Any norm for RN , whose closed spheres around the origin are
polytopes with 2N extreme points (which by the preceding Theorem form a set
B [ �B, where B is a linear basis) is called an M norm.

Examples of M norms are evidently v and p1. The class of M norms is an
equivalence class under linear isomorphism. We are interested here mainly in
the study of M norms, and more precisely in a subclass of these norms, which
will be soon introduced.
Finally we recall from the same sources the following crucial result (as usual

we state it for the unit sphere but the result is true in general). The proof is
obtained exploiting the linear isomorphism de�ned by the bases feig and B and
the consequent relation between the closed unit sphere of the M norm and the
closed unit sphere of jj:jj1.

Theorem 6 Let S be the closed unit sphere around the origin of an M norm.
Then a point x 2 B(S) belong to the boundary of S i¤ x 2 C(�) where � �
ex(S) = B [ �B and � does not contain any pair of opposite points.

Since as recalled earlier B(S) is the the union of the proper closed exposed
faces of S, we can state the following:

Corollary 7 Let S be the closed unit sphere around the origin of an M norm.
The the family of closed exposed proper faces of S is given by the family of
polytopes generated by all subsets of ex(S), which do not contain pairs of opposite
points.

Another important consequence, that follows at once from the theory of M
norms developed so far, and the fact that a sphere is radial at the origin is the
following:
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Theorem 8 Let S be the closed unit sphere around the origin of an M norm.
Then any vector x 6= 0 belongs to the relative interior of one of the cones
generated by subsets of ex(S), which do not contain pairs of opposite points.

In the next section we will illustrate a property de�ning a special class of
norms, and apply it to M norms, showing that it makes possible to project
(with respect to the jj:jj2 norm) a point y =2 Srp on Srp (with the usual notations
and where p is any such M norm), by means of an extremely fast computa-
tion. Naturally, in this respect, the context is that of the celebrated Projection
Theorem for Hilbert spaces.

4 A Special Class of Norms and a Fast Projec-
tion Technique

Thanks to the theory developed hitherto, we can now pass on to deal with the
central concept of fast projection for the spheres of a special class of M norms.
We start recalling various facts of convex analysis and of vector topology.
This fast projection technique (where projection is intended with respect to

the jj:jj2 Hilbert space norm for RN ) was introduced in [2].
Since RN has an unique vector topology, any norm which we specify for

RN is necessarily continuous and its closed spheres are necessarily closed sets.
Since we can specify norms with polytopic closed spheres, which are compact,
any norm for RN has necessarily compact closed spheres (because by norm
equivalence they must be contained in a polytope). Notice that this is another
way to con�rm that RN is locally compact.
Since any norm for RN has compact closed spheres, by the KM Theorem, a

closed sphere Srp for a norm p in RN is the closed convex extension of the set of
its extreme points ex(Srp).
By the Riesz Theorem all continuous linear functionals on RN have the form

(n; :), where the vector n is uniquely de�ned by the functional.
An exposed face of Srp is de�ned to be the intersection of a supporting

hyperplane to Srp and S
r
p . Here a supporting hyperplane to S

r
p at x 2 Srp is

an hyperplane fy : (n; y) = (n; x)g such that:

(n; z) � (n; x) 8z 2 Srp

Consequently all exposed faces are closed compact and contained in B(Srp). By
the Projection Theorem:

PSrp (x+ r(n)) = x

The vector n is a normal to Srp at x, and the set of all normals to S
r
p at x is

a convex cone, called the normal cone to Srp at x and denoted by NSrp (x). A
vector n is normal to the closed exposed face F if:

n 2 NSrp (x) 8x 2 F
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The set of NF normals to F is also a convex cone, the normal cone to F . By
a a well known Separation Theorem, if x 2 B(Srp), then there is a continuous
linear functional which separates fxg and Srp , and this implies that B(Srp) is the
union of closed exposed faces of Srp .
With these premises we de�ne a special class of norms that play a central

role in our investigation. Recall that an extreme point of a closed exposed face
is also an extreme point of Srp . Thus each closed exposed face is the convex
extension of a subset of ex(Srp).

De�nition 9 An norm p for RN is said to be of class P if the closed unit sphere
of p around the origin has the property that each of its closed exposed face F
has a normal which belongs to the cone generated by ex(F). In other words,
NF \ Co(ex(F)) 6= �.

Our next aim is to show how for norms of classM\P the projection operator
can be given an extremely simple expression
Before getting to this, we state in general another simple but important

result, connecting projection on spheres of arbitrary radius r > 0 to projection
on the unit spheres. Such result should be borne in mind throughout the sequel.
Consider a norm p and a point x =2 Srp , where Srp is the closed sphere of p around
the origin with radius r.
Then we can state the following simple but important theorem, where PC

denotes the projection function on the closed convex set C.

Theorem 10 The following formula holds:

PS�px = �PS1p
x

�

Thus if r = p(x) and we project x on a sphere of radius cr with 0 < c < 1 we
obtain

PScrp x = crPS1p
x

cr

Consequently the projection depends continuously on the factor c.

Proof. Clearly S1p =
1
�S

�
p . Hence if we project

x
� on S

1
p , all distances in terms

of the jj:jj2 norm are divided by � with respect to the projection of x on S�p ,
since norms are absolutely homogeneous. Thus the minimal distance of x� from
S1p is

1
� the minimal distance of x from S

�
p . By the same argument, multiplying

PS1p
x
� by � we infer that x is the point of minimal distance of x from S�p .
We call the application of this result, that is, the procedure of using the rhs

to compute the lhs, scaling and descaling.
Of course this Theorem is a further reason why we will develop our theory

making constant reference to unit spheres.
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4.1 Fast Projection Technique

Let p be a M norm of class P, S1p the unit closed sphere around the origin of p
and x a vector outside S1p , so that p(x) > 1.
Let�s move on the ray generated by x. Since x=p(x) 2 B(S1p), it is in the

relative interior of a proper closed exposed face of S1p . This means that x is
in the relative interior of the cone Co(fv1; ::vkg) generated by set of vertexes
fv1; ::vkg of such a face.
Let fv1; ::vkg the set of such vertexes so that:

x

p(x)
=
X

�ivi, with �i > 0, 8i,
X

�i = 1

and
x = p(x)

X
�ivi =

X
p(x)�ivi =

X
�ivi

with �i = p(x)�i. By hypothesis, the face in question has a normal n1 given by:

n1 =
X


ivi, with 
i � 0, 8i and n1 6= 0

The idea of the method is to move toward the sphere along �n1 until either
we met the boundary of S1p , which means that we have found the projection
and the procedure can be arrested, or we hit the relative boundary of the cone,
meaning that at least one (or more) of the coe¢ cients �i � �
i zeroes (while
all the others stand positive), for some � > 0, and hence we arrive to a vector
which is in the cone generated by a subface of the face we started with. At this
point we can start another similar step. Clearly the procedure is arrested in a
�nite number of steps, smaller than the dimension of the space. Also it is clear
that the computation is practically as fast as the computation of the required
normals.
Formally, coming back to the �rst step, we de�ne two positive constants:

�1 = minf�i=
i : 
i 6= 0g

which gives the value of � at which x � �n1 hits the relative boundary of
Co(fv1; ::vkg), and

�1 =

P
�i � 1P

i

which gives the value of � at which x� �n1 hits B(S1p). In fact:

x� �1n1 =
X

�ivi �
P
�i � 1P

i

X

ivi =

X
(�i �

P
�i � 1P

i


i)vi

and X
(�i �

P
�i � 1P

i


i) =
X

�i �
X

�i + 1 = 1

Let
�1 = minf�1; �1g
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and x1 = x� �1n1. If:

�1 = �1 ) p(x1) = p(x� �1n1) = 1

and thus the procedure is arrested because x1 is the sought projection. If instead
�1 = �1, then x1is in the relative boundary of the cone Co(fv1; ::vkg) and
p(x1) > 1.
Note that if x1 is proportional to a vertex vj , put x2 = vj and, by hypothesis,

the procedure can be arrested because x2 is the sought projection. If x1 is not
proportional to any vertex, perform another identical step, replacing x by x1.
By construction, the procedure is arrested in m � N steps in a point xm

such that p(xm) = 1, and

x = xm +
mX
i=1

�1n1

where
mP
i=1

�1n1 is a normal to S1p at xm, and therefore xm is the sought projec-

tion.

5 Fast Projection on Variation Spheres

As mentioned in [4], in 1980 the author implemented in Pascal the projection
procedure described in the preceding Section, for the norm v. Indeed the imple-
mentation, devising a diagonalization technique for the computation of normals
to the faces of the spheres Srv , con�rmed that the variationM norm v is of class
P. A Modula2 version of the program was subsequently written by the author
and the procedure normal was published in 1988 in [5] to give a constructive
proof of this circumstance.
However, while the round of ideas behind the diagonalization technique used

for the computation of normals turns out to be correct, we will momentarily give
a new, better and more readable proof, of purely mathematical nature. This
new proof in turn allows to develop simpler and more e¢ cient implementations.
There is a crucial remark connected to this method applied to the variation

norm v. Since we always move along the opposite of external normals and since
such normals are in the cone of the vertexes (which represent jumps of the
signal) the projected signal has all jumps reduced in absolute size and possibly a
jump is reduced to zero, but its sign is never inverted.
This remark is of paramount importance for us and we will formalize it

momentarily. Indeed this remark is one of the premises, on which leans the
superfast projection method. The further required premises and the method
itself will be introduced after giving a new proof that the variation norm is of
class P.
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6 A New Proof That Norm v Is of Class P.
The result that insures that the norm v is of Class P is clearly central in our
theory, because it allows to extend the just described fast projection technique to
to the norm v, thereby making it possible an extremely e¢ cient implementation
of the concept that the projection of a time series s on a sphere Srv with r <
v(s) can be seen as a smoothing �lter. Indeed the proof will also implicitly
indicate a technique to calculate the normals, showing that the complexity of
such calculation is minimal. The superfast method of projection introduced in
the next section further improves e¢ ciency in respect of computation of normals,
because it shows that the computation can be carried out exclusively for the
case of maximal proper faces.
We start with a Lemma.
Observe that the matrix TT � has the following structure::

TT � =

0BBBBBB@
1 �1 0 0 0 :: 0 0
�1 2 �1 0 0 :: 0 0
0 �1 2 �1 0 :: 0 0
0 0 �1 2 �1 :: 0 0
:: :: :: :: :: :: :: ::
0 0 0 0 0 :: �1 2

1CCCCCCA
Here is for example and for more clarity the case N = 6:

TT � =

0BBBBBB@
1 �1 0 0 0 0
�1 2 �1 0 0 0
0 �1 2 �1 0 0
0 0 �1 2 �1 0
0 0 0 �1 2 �1
0 0 0 0 �1 2

1CCCCCCA
The structure of T �T is similar. We give an example for N = 6;since exam-
ples may be clearer than the general case and immediately extrapolable to any
dimension.

T �T =

0BBBBBB@
2 �1 0 0 0 0
�1 2 �1 0 0 0
0 �1 2 �1 0 0
0 0 �1 2 �1 0
0 0 0 �1 2 �1
0 0 0 0 �1 1

1CCCCCCA
Both matrices have nonzero entries only in the main diagonal and the upper
and lower subdiagonals. Both these subdiagonals have all the entries equal to
�1. TT � has the main diagonal of all 2 except the �rst entry which is 1, while
T �T has the main diagonal of all 2 except he last entry which is 1. Also notice
that all rows except the �rst and the last are the same in the two matrices. Of
course both these matrices are selfadjoint and nonsingular.
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Remark 11 It is interesting to note that both this matrices have a self-reproducing
property in the following sense. If in TT � we delete the last k < N rows and
columns we obtain a matrix of the same form but of order N � k. A similar
property holds for T �T but deleting the �rst k rows and columns. Even more
than that: if in TT � we delete the �rst k rows and columns, we obtain a matrix
of the same form as T �T , with the only exception that the last element of the
main diagonal is a 2 instead of a 1. A similar statement arise deleting the last
k rows of T �T .

Recall that � denotes a sequence of N signs (+ and �) and I� is the matrix
obtained modifying the identity matrix in such a way that the sequence of signs
on the main diagonal is �, and let e denote the vector with all 1 entries in RN .
Then we can state the following

Lemma 12 The vector TT �e is nonnegative and the vector I�TT �I�e is non-
negative for arbitrary �. The same statements are true for the matrices T �T
and I�T �TI�e.

Proof. The �rst statement is obvious. As to the second we note that the e¤ect
of the two matrices I� is to leave unchanged the signs of the entries on the main
diagonal, while all other entries on the rows and the columns of the same index
as a -1 in I� change signs. But clearly this can only a¤ect the entries of each
row of TT � in the sense that they can only possibly pass from a negative value
to a positive value. Hence the sum of entries of each row stands non negative.
The analysis leading to the remaining statements is analogous and can be safely
omitted.

Theorem 13 The M norm v for RN is of class P.

Proof. The �rst step of the proof consists in showing that the thesis is true
for the maximal proper faces of S1v . In a second step we will eliminate this
restriction. That a proper face is maximal means, as we know, that a signal in
its relative interior has a nonzero jump at all times. We exploit the facts that
the norm p1 is of class P (a fact that can be ascertained by inspection), that
the normal cone to the maximal faces is a ray (and so there is no problem of
choosing the right normal) and the link between normal cones of the maximal
faces of the spheres S1p1 and S

1
v . We know that:

S1p1 = C(feig [ f�eig)

and
S1v = C(fT�1eig [ f�T�1eig)

where T�1 is the lower triangular matrix in (1). In view of Theorem 6 a maximal
face Fp1 of S

1
p1 has the expression:

= C(�e1; ::;�eN ) (3)
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If we form the sequence of vectors that are the di¤erence of the successive
extreme points of the polytope in (3), we see that a normal n to Fp1 has all �1
components and maintains the same sequence of sign that are found in (3), and
hence such signs correspond to the signs of the jumps in the signal. With this
proviso n has the form:

n =

0@�1::
�1

1A
Now we want to compute the normal z to the corresponding maximal face of
S1v :

Fv = C(�T�1e1; ::;�T�1eN )
Thus for i = 2; ::N :

(�T�1ei ��T�1ei�1; z) = 0, ((�ei ��ei�1; T�1�z) = 0,

, ((�ei ��ei�1; T ��1z) = 0
and hence

z = T �n (4)

where T � is the matrix that has with all 1 in the main diagonal, all �1 in the
�rst upper diagonal and all other entries 0:

T � =

0BBBB@
1 �1 0 0 0
0 1 �1 0 0
:: :: :: :: ::
0 0 0 1 �1
0 0 0 0 1

1CCCCA
We can express (4) in the following way. Consider an arbitrary sequence � of
signs (+ and �) then all possible vectors n are given by I�e. Then we can
write z = T �I�e. On the other hand we want to show that z is in the cone
of vertexes of the Fv. This means that it should be z = T�1I��, where � is
a nonnegative vector and T�1I� is the matrix of vertexes of Fv. Hence from
z = T�1I�� = T �I�e, we infer, taking into account that I�1� = I�, for any �
that we must see if:

� = I�TT
�I�e � 0, 8�

But this is insured by the Lemma, and so the �rst part of the thesis (the one
regarding the case of all non zero jumps in the signal) is established. Next, if
at a certain time index k the normal n has a zero, we know that at the same
index the vector � must have a zero, because the corresponding vertex does not
appear in z. Thus in the equation � = I�TT �I�e we can suppress the kth row
and the kth column and write the equation:

�N�1 = GeN�1

where �N�1 is the vector obtained from � eliminating the kth component and
similarly for eN�1 and e, and the matrix G is obtained from the matrix I�TT �I�

14



eliminating the kth row and the kth column. Hence in G, aside from the kth
row that has disappeared, we have deleted in I�TT �I� only elements outside
the main diagonal. This implies that �N�1 � 0, thereby completing the proof,
by a straightforward iteration arguments if n has more than one zero. Finally
notice that, if the deletion regards the �rst or the last k rows and columns, the
Lemma and subsequent Remark 11 would be in force, simplifying even further
our argument.

Remark 14 The second part of the proof can also be achieved looking at the
behavior of normal cone to the faces, moving down the lattice of faces. The
smaller is the set of vertexes the larger is the normal cone. We illustrate this
mechanism considering two adjacent maximal faces, which di¤er because only
one of their extreme points have opposite sign. The normal cone of the face
intersection of these two faces contains the normal cones of both the maximal
faces. It follows that there is a conical combination of the normals to the two
maximal faces, which is in the cone of the vertexes of the intersection face.
Clearly this mechanism works in general.

Remark 15 The above proof o¤ers one possible approach to the implementation
of the fast projection, which is more advanced than the technique used in the
cited original implementation. Notice also that, in the case of maximal faces,
thanks to this theorem, there is a third alternative, which consists in exploiting
the Gram Schmidt procedure on the set of consecutive vertexes di¤erences and
using as last vector the last vertex (naturally the sign of the normal must be
adjusted to select the external normal).

It may be useful to give some examples to see how this result works in
practice. The �rst example is for a maximal face. The second for a non maximal
face.

Example 16 We give an example for N = 5 in which the signal has nonzero
jumps at each time. Let

n =

0BBBB@
1
�1
1
�1
1

1CCCCA
so that:

z = T �n =

0BBBB@
1 �1 0 0 0
0 1 �1 0 0
0 0 1 �1 0
0 0 0 1 �1
0 0 0 0 1

1CCCCA
0BBBB@
1
�1
1
�1
1

1CCCCA =

0BBBB@
2
�2
2
�2
1

1CCCCA
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the matrix of vertexes is:

V =

0BBBB@
1 0 0 0 0
1 �1 0 0 0
1 �1 1 0 0
1 �1 1 �1 0
1 �1 1 �1 1

1CCCCA
and the matrix of di¤erences of subsequent vertexes is:

�V =

0BBBB@
1 0 0 0
2 �1 0 0
2 �2 1 0
2 �2 2 �1
2 �2 2 �2

1CCCCA
so that actually �V �z = 0. Finally, as to the vector � of conical coe¢ cients:

� = I�TT
�I�e =

0BBBB@
2
4
4
4
3

1CCCCA
and indeed V � = z.

Example 17 We take n so that one of the jumps is lacking.

n =

0BBBB@
1
�1
0
1
1

1CCCCA
In this case:

z = T �n =

0BBBB@
1 �1 0 0 0
0 1 �1 0 0
0 0 1 �1 0
0 0 0 1 �1
0 0 0 0 1

1CCCCA
0BBBB@
1
�1
0
1
1

1CCCCA =

0BBBB@
2
�1
�1
0
1

1CCCCA
The matrix of vertexes is now:

V =

0BBBB@
1 0 0 0
1 �1 0 0
1 �1 0 0
1 �1 1 0
1 �1 1 1

1CCCCA
16



and:

�V =

0BBBB@
1 0 0
2 �1 0
2 �1 0
2 �2 �1
2 �2 0

1CCCCA
so that actually �V �z = 0. Finally, we write the system �N�1 = GeN�1:

�N�1 =

0BB@
1 1 0 0
1 2 0 0
0 0 2 �1
0 0 �1 2

1CCA
0BB@
1
1
1
1

1CCA =

0BB@
2
3
1
1

1CCA
As we can see the e¤ect of the matrices I� not only preserves but improves the
property that the sum of entries of each row is non negative. so that:

�N�1 =

0BB@
2
3
1
1

1CCA
and indeed V �N�1 = z.

7 The Superfast Version of Projection

In 2009 the author implemented in MatLab an even faster version of the al-
gorithm without publishing it. We give here an account of this version with
a proof based on the theory of fast projection (exposed in Session 5) and, of
course on Theorem 13.
The method is a simple variant of the fast projection technique. The idea

is that of projecting always on maximal faces because the axes where normals
have zero components are eliminated shrinking the space. In a �nal step we get
back to the original space and the sought projection.
SUPERFARST PROJECTION METHOD
1- If, at a certain time t, s(t+ 1) = s(t), delete the sample s(t+ 1). Repeat

until at each t there is a jump.
2- Memorize the position of each deleted sample staring from the last.
The resulting signal is on a space Rn1 , with n1 < N .
3- Apply the �rst step of the fast projection method, where now the signal

is necessarily in the cone of vertexes of a maximal face of the sphere S1v . In this
respect note that we of course apply a scaling descaling step. Since the normal
cone to the face is a ray, it is possible to calculate the normal either as illustrated
in the proof of Theorem 13 or with a simple Gram Schmidt application, rather
then a diagonalization procedure illustrated in [5]. If the resulting signal is in
B(S1v), go to step 4. If not, then at one or more times the signal is constant.
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Proceed as is step 1 and 2 to delete repeated samples and register their position.
Repeat this step until the signal is in B(S1v).
4- Restore the repeated samples starting from the last up to the �rst.
Before proving that the superfast procedure calculates the actual projection

of the signal to S1v , we state some helpful lemmas.

Lemma 18 Consider a signal s =2 S1v and project it on S1v with the fast projec-
tion method obtaining the unique signal fsi. Than the projection on S1v of any
intermediate signal produced by the method at the end of each step is fsi.

Proof. This is clearly built in the method.
The next two lemmas regard signal which have some equal consecutive sam-

ples. It is important to bear in mind that these samples have no e¤ect on the
variation of the signal.

Lemma 19 Suppose that the signal s =2 S1v has some points of no jump, that is,
for some t it is true that s(t+1) = s(t).Then the same relation fsi(t+1) = fsi(t)
holds for the projection on S1v for all the same t

0s.

Proof. In fact, under the hypothesis, the vertexes generating the cone where
the signal sits does not include the corresponding vectors in (2) (with either a
+ and � signs). Thus the normal, which is in the cone of these vertexes, has
zeros at each position where a value is repeated. Going on in the procedure, the
successive normals belong to subcones of this cone, with the consequence that
at each step the values in these positions in fsi never di¤er from the preceding
values.

Lemma 20 Suppose that the signal s =2 S1v has some points of no jump, that
is, for some t it is true that s(t + 1) = s(t). Let�s consider one of these at
time t, so that s(t + 1) = s(t). We assume, without restriction of generality
that s(t + 2) 6= s(t + 1). If we construct a new signal sa, inserting in s at
t+ 2; ::; t+ k further samples all equal to s(t+ 1), then the projection of sa on
S1v can be obtained from fsi, inserting at t+2; ::; t+ k further samples all equal
to fsi(t + 1). Similarly, under the same assumption, if construct a signal sd
deleting from s the sample s(t+1), its projection on S1v , can be obtained deleting
from fsi the sample fsi(t+ 1).

Proof. This is a rather direct consequence of the same argument used in the
proof of the preceding lemma.
We are now in a position that allows to establish the following main

Theorem 21 The superfast projection procedure provides the projection of s on
S1v .

Proof. At this point the thesis of this theorem is a rather immediate conse-
quence of the last lemma.
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8 Projecting On w Spheres By Means of Pro-
jections On v Spheres

We start with a general analysis regarding continuous seminorms in real Hilbert
spaces and the projection operator to closed spheres de�ned by a seminorm.
So let H be a real Hilbert space and let p be a continuous seminorm for H.

As usual we denote by Srp , the closed sphere around the origin of radius r. In the
next theorem we adapt from [2] some basic facts about continuous seminorms
and give the expression of the projection of a point of the space x =2 Srp on Srp
itself.

Theorem 22 The following statements hold for a continuous seminorm p de-
�ned on a real Hilbert space H. (i)

N (p) = p�1(f0g) = f0g� is a closed linear subspace of H

(this subspace will be denoted by Np). (ii) pjN? is a continuous norm for the
Hilbert space N? and

Srpj
N?

= Srp \N?
p

. (iii) For x 2 HnN (so that we can write x = xN + xN?):

PSrpx = PSrpj
N?
p

PN?
p
x+ xN = PSr

pj
N?
p

xN? + xN

Proof. In the proof for simplicity we denote N?
p by N

?. Statement (i) is a well
known fact of vector topology (see e.g. [1] and for more details [7]). Statement
(ii) is straightforward because H = N � N?, where N and N? are closed
complementary linear subspaces. Consequently:

x 2 N? and p(x) = 0) x 2 N ) x = 0

To prove (iii) we apply the Projection Theorem and calculate that, for arbitrary
y 2 Srp :

(x� PSr
pj
N?
xN? � xN ; PSr

pj
N?
xN? + xN � y) =

= (xN? � PSr
pj
N?
xN? ; PSr

pj
N?
xN? + xN � yN � yN?) =

= (xN? � PSr
pj
N?
xN? ; PSr

pj
N?
xN? � yN?)

On the other hand p(yN?) = p(y) (this is immediate but anyway proved in [7])
so that yN? 2 Srp \ N? and Srpj

N?
= Srp \ N?. Consequently, applying the

Projection Theorem we can a¢ rm that the last term in this chain of equalities
is nonpositive, and therefore the theorem is established.
We can see from this theorem that the case of a seminorm is reduced to

computing �rst the projection of x on N and on N?, then projecting this latter
projection on Srpj

N?
= Srp [N? and, �nally, adding to the result the projection

of x on N .
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Let�s see how this general result specializes in the speci�c case of the semi-
norm w de�ned on RN . In this respect we can state the following, where for
s 2 RN we de�ne Av(s) =

P
si
N .

Theorem 23 Consider the w seminorm on RN . Then N (w) is the one dimen-
sional linear subspace of constant functions, that is, L(feg). The orthogonal
projection on N (w) is:

PN (w)(s) = Av(s)e

so that
PN (w)?(s) = s�Av(s)e

and
N (w)? = fs : Av(s) = 0g

Proof. It is obvious that s 2 N (w) i¤ s is a constant function. Hence to project
orthogonally a vector s on the linear subspace N (w) we have to minimize with
respect to the constant c the functionX

(s(i)� c)2

with respect to c. We leave this as an exercise, in which once the �rst and second
derivatives with respect to c are calculated, one can verify that the solution is
Av(s)e. To prove the last statement notice that for a signal to be orthogonal
to any constant nonzero signal it must beX

s(i)c = 0,
X

s(i) = 0, Av(s) = 0

Notice that we can calculate:

(s�Av(s)e;Av(s)e) = NAv(s)2 �NAv(s)2 = 0

Also recall that, in view of Theorem 22 wjN (w)? is a norm.
The consequence of these results, ignoring for simplicity the scaling and

descaling procedure which is clearly also valid for seminorms, is that to project
a signal s on S1w, we have �rst to calculate Av(s)e and s�Av(s)e. Next we have
to project s�Av(s)e on S1w \N?

w where N?
w = fs : Av(s) = 0g and, �nally, add

to the result of this projection the signal Av(s)e.
Note that, given the invariance of w under translations by constant signal

we can write:

S1w = fs : w(s) � 1g = fs : w(s� s(1)e) � 1g = fs : v(s� s(1)eg � 1

Our main theorem relating projection on spheres of the seminorm w to projec-
tions on spheres of the norm v will derive from elaborating on the set S1w and
from two Lemmas on projections.
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Lemma 24 The sphere S1w can be expressed as follows

S1w = (S
1
w \N?

w )�Nw

Proof. Consider z 2 S1w and write with obvious meaning of symbols

z = zN?
w
+ zNw

Notice that the properties of seminorms imply

w(zN?
w
) � w(z) = w(zN?

w
+ zNw) � w(zN?

w
) + w(zNw) = w(zN?

w
)

and hence w(z) = w(zN?
w
). It follows

w(z) � 1, w(zN?
w
) � 1

so that, if z 2 S1w, then zN?
w
2 S1w \N?

w . In this way we have proved:

S1w � (S1w \N?
w )�Nw

Conversely, consider a vector y of the form x+w with x 2 S1w\N?
w and w 2 Nw.

Then
w(y) = w(yN?

w
) = w(x) � 1

This shows that
(S1w \N?

w )�Nw � S1w
thereby completing the proof.

Lemma 25 Suppose that a vector w 2 N?
w then

PS1ww 2 N
?
w

Proof. In fact, if we consider the projection PS1w\N?
w
w any other point of S1w

has, in view of the preceding lemma, larger distance from w than PS1w\N?
w
w.

Lemma 26 Let H be a real Hilbert space, F a closed subspace and C a closed
convex set contained in F . Then, 8 y,

PC(y) = PCPF y

Proof. take any point z 2 C, and write:

y � z = y � PF y + PF y � z

and hence, by the Pythagorean Theorem,

jjy � zjj2 = jjy � PF yjj2 + jjPF y � zjj2

Now jjPF y�zjj2 is minimized by jjPF y�PCPF yjj2. Hence PCPF y is the sought
projection.
We are now ready to state our main result.
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Theorem 27 In the already proved expression:

PS1ws = PS1w\N?
w
(s�Av(s)e) +Av(s)e

we have, letting F = fs : s(1) = 0g:

PS1w\N?
w
(s�Av(s)e) = PS1vPF (s�Av(s)e)

Proof. We have already shown that

S1w = fs : s 2 RN , v(s� s(1)eg � 1

Next we claim that
F = fz = s� s(1)e, s 2 RNg

In fact clearly if z = s� s(1)e then z(1) = 0, so that

fz = s� s(1)e, s 2 RNg � F

Conversely, consider z 2 F , so that z(1) = 0 and, for an arbitrary real �1, de�ne
s = z + �1e, so that z = s� s(1)e. This means that

F � fz = s� s(1)e, s 2 RNg

completing the proof of our claim. Consequently:

S1w = fs : v(s� s(1)eg � 1 = S1v \ F (*)

Next note that since s�Av(s)e 2 N?
w , in view of Lemma 25

PS1w(s�Av(s)e) 2 N
?
w

and hence:
PS1w\N?

w
(s�Av(s)e) = PS1w(s�Av(s)e)

and also, by (*) and applying Lemma 26:

PS1w\N?
w
(s�Av(s)e) = PS1w(s�Av(s)e) = PS1v\F (s�Av(s)e) = PS1v\FPF (s�Av(s)e)

Now projecting on F consists in zeroing the �rst component. By Lemma 19,
the projection on S1v leaves this �rst component equal to zero. Thus in the last
term, projecting on S1v \ F or S1v is the same. Hence we have proved that

PS1w\N?
w
(s�Av(s)e) = PS1vPF (s�Av(s)e)

thereby establishing the theorem.
This theorem shows that projecting on S1w can be achieved by the following

algorithm, which uses only projections on S1v :
Step 1 - Compute Av(s) and s�Av(s)e
Step 2 - Compute the projection PS1vPF (s�Av(s)e)
Step 3 - Compute PS1vPF (s�Av(s)e) +Av(s)e.
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9 Examples of Possible Applications of the Fast
Projection Techniques

First of all it is very important to note that, thanks to the results of the penul-
timate section, all applications can not only be formulated both in terms of
the norm v or in terms of the seminorm w, but also e¢ ciently implemented in
either case.
It is thus only for simplicity and to �x the ideas that we will refer to the

norm v.
In [4] the author gave various numerical examples where a time series is

smoothed projecting on a v sphere of radius given by various percentages < 1
of the norm of the given signal.
One can think of a large variety of practical applications. Among these there

are e.g. �ltering of a noise corrupted signal, seasonal adjustments, portfolio
management. We will brie�y illustrate them.
In [6] the proposed technique of seasonal adjustment used a step for noise

�ltering.

9.1 Noise Filtering

Suppose that a signal s is corrupted by noise, that is, we can only observe a
signal os = s + n, where n is a noise. The noise is assumed to be zero mean
Gaussian distributed and uncorrelated. Typically the signal varies more slowly
than the noise and the noise increase the variation as observed with respect to
the original signal s.
The proposed technique of �ltering consists in projecting os on a sequence

of variation spheres of radius r(c) = c � v(os), where c is a percentage, which
can be taken for example 99%, 98%,::. This is made possible by the fact that
the projection is extremely fast. At each step we compute the residual signal
and evaluate its von Neumann Ratio, to select the percentage which gives us
the maximum of such ratio. In other words, we do a brute force maximization
of the von Neumann ratio (brie�y VN ratio) of the residual signal:

os� P
S
r(c)
v

Once the maximum at co has been determined, our estimate of the corrupted
signal s will be P

S
r(co)
v

. Naturally one can think of many variant of this technique
varying the assumptions and the selected statistic.

9.2 Seasonal Adjustment

There is a large literature on seasonal adjustment, which is based on linear au-
toregressive models, that is models in which each value of a time series depends
linearly on the preceding p values. There are many established techniques and
also institutions tend to adopt standardized algorithms. We cite for example
[13]. A relatively recent survey with a large bibliography is [14].
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Clearly our methods are profoundly di¤erent from those of main stream liter-
ature. Moreover, we have an exclusive research intent and not that of proposing
an alternative to the current state of art.
However, the techniques illustrated in these references might complement

the present one for forecasting purposes. That is, one may �t one of those
linear models to the trend series obtained with the present techniques and use
an autoregressive linear model to forecast subsequent values.
We model the series as a sum of a trend signal plus a noise signal plus a

signal representing seasonal variations.
The author could not �nd a formal de�nition of the seasonal component. In

[6] a rather ad hoc de�nition was adopted, while here we would like to make an
attempt to more generality.

De�nition 28 Consider a reference interval of time for example a year. To �x
the ideas we refer to this case. Then a yearly signal is de�ned to be a seasonal
signal if its time domain can be divided in intervals on which the signal has
alternating signs. That is, for example it is positive in the �rst interval, negative
on the second and so on (if the intervals are more than two).

In what follows we continue to refer to the case where the reference period
is the year.
Consider a time series that we want to deseasonalize. We assume that we

have monthly data for a number of years. We dispose the series in a matrix,
whose rows are the monthly data of each successive year.
The three components of the observed series are determined by a two steps

procedure.
In the �rst step we apply the noise �lter of the preceding subsection on the

columns of the matrix, in this way getting rid of the noise component.
In the second step we consider each row, that is each year, where now the

signal in question derives from Step 1.
For each row (or year) �(:) we apply the smoothing �lter for a grid of pa-

rameters 0 < c < 1 and look for values of c for which the residual signal is a
seasonal signal. Then we select the value of co of c, such that the residual signal
is a seasonal signal and its norm jj:jj2 is maximal with respect to all values of c
that produce a residual seasonal signal.
At this point we de�ne the signal P

S
cov(�)
v

� to be the trend component of
the time series under investigation and � � P

S
cov(�)
v

� its seasonal component.

9.3 Portfolio Management

Consider a stock for which it is available a price time series in an interval of
time, which represent our signal s. It is assumed that the stock is volatile and
the management method aims to take advantage of its volatility to produce a
pro�t.
We successively project s on the spheres Sciv(s)v , where ci is a percentage.

As usual we consider a grid for the parameter ci. For example it takes values in
an interval say 0; 95 to 0:50 in steps of 0; 05.
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For each projection we record the maximum Mci and minimum mci of the
�ltered signal fsi(ci). We divide Mci and mci in intervals, de�ned by the
same percentage �j for the maximum and minimum, say from 0; 95Mci to to
0; 50Mciand from 0; 95mci to 0; 50mci .
For each percentage �j we make the following computation. Assume for

example that we start with a certain amount in cash (such amount is irrelevant
for our purposes, but naturally we can assume that it is the exact amount to
buy 100 shares at a price that will be given shortly). When fsi(ci) intersect the
level �jmci we buy our 100 shares at the price �jmci . When the price intersect
�jMcj , we sell our shares making a pro�t. At the next intersection of of fsi(ci)
with �mcj we will invest all the cash obtained, hence buying more than 100
shares (of course there is a granulosity and it is not granted that we will obtain
more than the initial amount of shares) and we go on in this way all along
the time series. Assume that we stop with the last possible sale. We register
the �nal amount R(ci; �j) of cash C at hand divided by the invested cash as a
function of ci and �j .
Then we compute the maximum of R(ci; �j), let it be R(co; �o).
For the next future buying and selling operations we �x as buying level

�omco and the selling level �oMco . Then we repeat the computation with the
new samples available.
Naturally, one can conceive obvious variant of the procedure changing its free

parameters and experiment to see what setting appear to be more satisfactory,
and adapting the parameters as suggested by the experience that accumulates
managing the portfolio.

10 Research Perspectives

The results in the penultimate section introduce a very e¢ cient technique to
smooth signal with respect to the pure seminorm variation w using the variation
norm v. Moreover, they open the way to simple numerical experiment aiming
at comparing the technique of smoothing using the v variation norm with the
technique of smoothing using the pure variation seminorm w. We expect that in
practice the results are similar, and the more so the lower is the ratio js(1)j=w(s),
justifying in certain cases the possibility of a simpler procedure in terms of v
that approximates the analogous results in terms of the pure variation w. In
cases where the use of w is mandatory, our results allow to use w with extreme
e¢ ciency, dispite the general di¢ coulties of handling seminorms.
In the stochastic model mentioned in the section on �ltering, the l2 approach

consist in projecting the observation on the increasing family Hilbert subspaces
Ht of signal that are measurable with respect to the � algebra generated by the
observations up to the current time. It is obvious that recursivity is built in,
because at each time t+ 1 the projection is given by the sum of the projection
on the subspace corresponding to Ht plus the the projection on the orthogonal
complement of Ht in Ht+1. Note that all these projections are linear continuous
operators.
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We note in passing that the �ltered signal is a martingale stochastic process
adapted to the sequence of � algebra generated by the observations.
The mechanism behind the Kalman �lter, where the model include a dy-

namic system driven by noise and with noisy observations, is similarly based
on calculating the projections on the closed subspaces of signals measurable
with respect to the increasing in time family of � algebras generated by the
observation stochastic process. And the stochastic process of projections is a
martingale.
This suggests that martingale theory is an appropriate setting for the theory

of Kalman �ltering. A literature going in this direction originated from [10] (see
for example [11]).
In our case the variation �lter, although deterministic, has a stochastic in-

terpretation because, in view of the Projection Theorem, the projection on any
closed convex set is a continuous and hence measurable function. However, the
calculations on probability measures may be di¢ cult because of the high non
linearity of the relevant projection. In this perspective it may interesting to
begin with, to apply the variation norm �lter to the same model assumed by
the Kalman �lter and perform a numerical comparison to have a �rst sense of
the di¤erence.
Can we hope to arrive to a recursive version of the variation based �lter?

The question has in our opinion only a theoretical conceptual interest, because
the �lter is so fast that recursion would add little on the numerical side for the
application of the �lter.
We doubt that this is possible at all given the high non linearity of the

�lter (projection on a polytope) and the di¢ culty of �nding a relation between
the projections obtained maximizing the VN ratio of the residue in successive
instants of time.
Another interesting challenge would be the extension of the theory presented

here in continuous time, with reference to continuous time functions of bounded
variation.
We believe that there is a strong motivation for a such a theory, given the

well known fact that in the theory of stochastic di¤erential equations, that they
be a la Ito or based on weak distributions, not only for the in noise term, for
example Brownian motion in the case of Ito di¤erential equation, sample func-
tions have non bounded variation with probability one. In fact the stochastic
equation fails to have a smoothing e¤ect, in the sense that the same fact (sam-
ple functions have non bounded variation with probability one) is true for the
solutions of di¤erential equations both in the Ito sense and in the white noise
(weak distribution) sense, see [8].
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